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Abstract We consider transport diffusion in a stochastic billiard in a random tube which
is elongated in the direction of the first coordinate (the tube axis). Inside the random tube,
which is stationary and ergodic, non-interacting particles move straight with constant speed.
Upon hitting the tube walls, they are reflected randomly, according to the cosine law: the
density of the outgoing direction is proportional to the cosine of the angle between this di-
rection and the normal vector. Steady state transport is studied by introducing an open tube
segment as follows: We cut out a large finite segment of the tube with segment boundaries
perpendicular to the tube axis. Particles which leave this piece through the segment bound-
aries disappear from the system. Through stationary injection of particles at one boundary
of the segment a steady state with non-vanishing stationary particle current is maintained.
We prove (i) that in the thermodynamic limit of an infinite open piece the coarse-grained
density profile inside the segment is linear, and (ii) that the transport diffusion coefficient
obtained from the ratio of stationary current and effective boundary density gradient equals
the diffusion coefficient of a tagged particle in an infinite tube. Thus we prove Fick’s law
and equality of transport diffusion and self-diffusion coefficients for quite generic rough
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(random) tubes. We also study some properties of the crossing time and compute the Milne
extrapolation length in dependence on the shape of the random tube.

Keywords Cosine law - Knudsen random walk - Random medium - Self-diffusion
coefficient - Transport diffusion coefficient - Random walk in random environment

1 Introduction

Diffusion in stationary states may be encountered either in equilibrium, where no macro-
scopic mass or energy fluxes are present in a system of many diffusing particles, or away
from equilibrium, where diffusion is often driven by a density gradient between two open
segments of the surface that encloses the space in which particles diffuse. In equilibrium
states, one is interested in the self-diffusion coefficient Dy, as given by the mean-square
displacement (MSD) of a tagged particle. This quantity, also called tracer diffusion coeffi-
cient, can be measured using e.g. neutron scattering, NMR or direct video imaging in the
case of colloidal particles. In gradient-driven non-equilibrium steady states, there is a parti-
cle flux between the boundaries which is proportional to the density gradient. This factor of
proportionality is the so-called transport or collective diffusion coefficient Dygps.

Often these two diffusion coefficients cannot be measured simultaneously under concrete
experimental conditions and the question arises whether one can infer knowledge about the
other diffusion coefficient, given one of them. Generally, in dense systems these diffusion
coefficients depend in a complicated fashion on the interaction between the diffusing parti-
cles. In the case of diffusion in microporous media, e.g. in zeolites, however, the mean free
path of the particles is of the order of the pore diameter or even larger. Then diffusion is
dominated by the interaction of particles with the pore walls rather than by direct interaction
between particles. In this dilute so-called Knudsen regime neither D¢ nor Dy,ps depend on
the particle density anymore, but are just given by the low-density limits of these two quan-
tities. One then expects Dgs and Dy,ps to be equal. This assumption is a fundamental input
into the interpretation of many experimental data, see e.g. [15] for an overview of diffusion
in condensed matter systems.

Not long ago this basic tenet has been challenged by Monte-Carlo simulation of Knudsen
diffusion in pores with fractal pore walls [17-19]. The authors of these (and further) studies
concluded that self-diffusion depends on the surface roughness of a pore, while transport
diffusion is independent of it. In other words, the authors of [17-19] argue that even in the
low density limit, where the gas particle are independent of each other and interact only with
the pore walls, Dgeir 7 Dyrans, With a dependence of Dy on the details of the pore walls that
Dyans does not exhibit. This counterintuitive numerical finding was quickly questioned on
physical grounds and contradicted by further simulations [22, 24] which give approximate
equality of the two diffusion coefficients. These controversial results gave rise to a prolonged
debate which finally led to the consensus that indeed both diffusion coefficients should agree
for the Knudsen case [25]. It has remained open though whether these diffusion coefficients
are generally exactly equal or only approximately to a degree depending on the details of
the specific setting.

A physical argument put forward in [26] suggests general equality. To see this one imag-
ines the following gedankenexperiment. Imagine one colours in a equilibrium setting of
many non-interacting particles some of these particles without changing their properties. At
some distance from this colouring region the colour is removed. Then these coloured parti-
cles experience a density gradient just as “normal” particles in an open system with the same
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pore walls would. Since the walls are essentially the same and the properties of coloured
and uncolored particles are the same, the statistical properties of the ensemble of trajecto-
ries remain unchanged. Hence one expects any pore roughness to have the same effect on
diffusion, irrespective of whether one consider transport diffusion or self-diffusion. Notice,
however, that this microscopic argument, while intuitively appealing, is far from rigorous.
First, the precise conditions under which the independence of the diffusion coefficients on
the pore surface is supposed to be valid, is not specified. This is more than a technical issue
since one may easily construct surface properties leading to non-diffusive behavior (cf. [8,
21]). Second, there is no obvious microscopic interpretation or unique microscopic defini-
tion of the transport diffusion coefficient for arbitrary surface structures. Dy.ps i a genuinely
macroscopic quantity and a proof of equality between Dy,ns and Dgej¢ (Which is naturally mi-
croscopically defined through the asymptotic long-time behavior of the MSD) requires some
further work and new ideas. One needs to establish that on large scales the Knudsen process
converges to Brownian motion (which then also gives D). Moreover, in order to compare
Dyrans and Dy one needs a precise macroscopic definition of Dy,,s Which is independent of
microscopic properties of the system.

The first part of this programme is carried out in [8]. There we proved the quenched
invariance principle for the horizontal projection of the particle’s position using the method
of considering the environment viewed from the particle. This method is useful in a number
of models related to Markov processes in a random environment, cf. e.g. [12, 13, 20]. The
aim of this paper is to solve the second problem of defining Dy and proving equality
with Dgs. As in [8] we consider a random tube to model pore roughness. In contrast to [8],
we now have to consider tubes of finite extension along the tube contour and introduce
open segments at the ends of the tube. Doing this rigorously then clarifies some of the
salient assumptions underlying the equality of Dy, and D¢ Naturally, since we are in the
dilute gas limit, there is no dependence on the particle density in either of the two diffusion
constants. This obvious point has not been controversial and will not be stressed below.

We note that we define Dy, through stationary transport in an open system since this is
accessible experimentally as well as numerically in Monte-Carlo simulation. Indeed, in the
literature that gave rise to the controversy that we address here, this way of defining Dy, is
used, albeit in a non-rigorous fashion. Sticking to this experimentally motivated setting we
shall give below a precise definition that can be used to prove rigorously that under rather
generic circumstances Dy,s = Dseir, Which means that both diffusion constants depend on
the pore surface in the same way. As pointed out above, this equality is expected from inde-
pendence of the particles and the invariance principle for the process and its time-reversed.
However, we could not find a general result applying here, and moreover, as it turns out,
the proof is not entirely trivial. There are some technical difficulties to overcome because
the quenched invariance principle of Definition 2.2 below is not very “strong” (there is no
uniformity assumption on the speed of convergence as a function of the initial conditions)
and the jumps of the embedded discrete-time billiard are not uniformly bounded. Let us
mention here that it is generally difficult to obtain stronger results in the above sense, since
the corrector technique, generally used in the proof of quenched central limit theorems for
reversible Markov processes in random environment, is still not sufficiently well understood.

To further illuminate the contents of our results we point out that in a bulk system the
equality of the self-diffusion coefficient and the transport diffusion coefficient for the spread
of equilibrium density fluctuations in an infinite system may be taken for granted in the
case of particles that have no mutual interaction. Hence another way of stating the main
conclusion of our work is the assertion that the transport diffusion coefficient as defined here
in a stationary far-from-equilibrium setting coincides with the usual equilibrium transport
diffusion coefficient.
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We also address finite-size effects coming from the fact that we are dealing with diffusion
in a finite, open geometry. This causes deviations from bulk results for first-passage-time
properties if a tagged particle starts its motion close to one boundary. In particular, we com-
pute the permeation time and the Milne extrapolation length that characterizes the survival
time of a particle injected at a boundary.

As a final introductory remark, it is worth noting that the case of Knudsen gas with the
cosine reflection law (which is the model considered in this paper) is particularly easy to
analyse because the stationary state can be written in an explicit form, cf. Theorem 2.8. As
explained below, this is related to the following facts: (i) there is no interaction between
particles, (ii) for random billiard (i.e., a motion of only one particle in a closed domain) with
the cosine reflection law the stationary measure is quite explicit, as shown in [6, 7]. Similar
questions are much more complicated when the explicit form of the stationary state is not
known. This is the general situation for non-equilibrium steady states. We refer to e.g. the
model of [2] (a chain of coupled oscillators) where one resorts to a bound on the entropy
production.

This paper is organized in the following way. In Sect. 2.1 we define the infinite random
tube, and then introduce the process we call random billiard. In Sect. 2.2, we then consider
a gas of independent particles with absorption/injection in a finite piece of the random tube,
and we formulate our results on the stationary measure for that gas and on the transport dif-
fusion coefficient. In Sect. 2.3, we go on to formulate first passage time results that concern
exit from and crossing of the finite tube by a tagged particle. The remaining part of the paper
is devoted to the proof of our results. In Sect. 3 we mainly use the reversibility of the process
to obtain several technical facts used later. In Sect. 4 we prove the result on the stationary
measure of the Knudsen gas in the finite tube. Section 5.1 contains the proofs of the results
related to the transport diffusion coefficient, and in Sect. 5.2 we prove the results related to
the crossing of the finite tube.

2 General Notations and Main Results

Naively the transport diffusion coefficient in tube direction x may be defined through
the diffusion equation for the probability density d; P(x,t) = 9,(D(x)d, P(x,t)), where
a possible x-dependence may originate from a spatial inhomogeneity of the tube. Denote
by J the particle current in the system; assuming stationarity with a probability density
P*(x) one has J = D(x)d, P*(x). With fixed external densities P™ at x = L and P~ at
x = 0 one finds by integration J = Dy with density gradient ¢ = (Pt — P7)/L and
D;alnS =L"! fOL dxD~'(x). By measuring the current and the boundary densities one can
thus obtain the transport diffusion coefficient without having to determine the local quantity
D(x). This result, however, implies knowledge of the local coarse-grained boundary densi-
ties P* to be able to make any comparison with Dys. In a real experimental setting as well
as for a given microscopic model these boundary densities P* are difficult to obtain. In par-
ticular, there is no well-defined prescription where precisely on a microscopic scale these
boundary quantities should be measured. We circumvent the problem of computing these
quantities from microscopic considerations by considering the total number of particles in
the tube rather than local properties of the boundary region of the tube. Together with prov-
ing a large-scale linear density profile in a stationary open random tube, one may then infer
the macroscopic density gradient, see the definition (3) below. Thus one obtains a macro-
scopic definition of the transport diffusion coefficient which is independent of microscopic
details of the model.
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2.1 Definitions of the Random Tube and the Random Billiard

In order to fix ideas in a mathematically rigorous form we first recall some notations
from [8].

Let us formally define the random tube in R?, d > 2. In this paper, R¢~! will always stand
for the linear subspace of RY which is perpendicular to the first coordinate vector e, we use
the notation | - || for the Euclidean norm in R? or R*~!. Fork € {d — 1,d} let B(x, &) = {y €
R* : |lx — y|| < &} be the open e-neighborhood of x € R¥. Define S¢~! = {y e R’ : ||ly|| =1}
to be the unit sphere in R?. Let

Sh={weS " h-w>0}

be the half-sphere looking in the direction /. For x € R?, sometimes it will be convenient
to write x = (o, u), being « the first coordinate of x and u € R?~!; then, « = x - e, and we
write u = Ux, being U the projector on R?~!. Fix some positive constant M, and define

E={ueR": ul < M). (1

Let A be an open connected domain in RY~! or R?. We denote by d A the boundary of A
and by A = AU dA the closure of A.

The random tube is viewed as a stationary and ergodic process @ = (wy,® € R),
where w, is a subset of E; cf. [8] for a more detailed definition. We denote by P the law
of this process; sometimes we will use the shorthand notation (-), for the expectation with
respect to [P. With a slight abuse of notation, we denote also by

o={(a,u) eR?: u € wy}

the random tube itself, where the billiard lives. Intuitively, w, is the “slice” obtained by
crossing w with the hyperplane {a} x R¢~!. We will assume that the domain w is defined in
such a way that it is an open subset of R?, and that it is connected. We write also & for the
closure of w. In order to define the random billiard correctly, following [6, 7], throughout
this paper we suppose that P-almost surely dw is a (d — 1)-dimensional surface satisfying
the Lipschitz condition. This means that for any x € dw there exist ¢, > 0, an affine isometry
J, :R?Y = R?, a function f, : R~! — R such that

e f, satisfies Lipschitz condition, i.e., there exists a constant L, > 0 such that | f;(z) —
fe@)| < Lillz — /|| forall z, 2';
e J,.x=0, f,(0) =0, and

TN Bx, &) ={z€BO,&,): 29 > £z, ..., 29 D).

Roughly speaking, Lipschitz condition implies that any boundary point can be “touched” by
a piece of a cone which lies fully inside the tube. This in its turn ensures that the (discrete-
time) process cannot remain in a small neighborhood of some boundary point for very long
time; in Sect. 2.2 of [6] one can find an example of a non-Lipschitz domain where the
random billiard behaves in an unusual way.

We keep the usual notation dx, dv, dh, ... for the (d — 1)-dimensional Lebesgue measure
on E (usually restricted to w, for some o) or Haar measure on S?~!. We write |A| for the k-
dimensional Lebesgue measure in case A C R¥, and Haar measure in case A C S~!. Also,
we denote by v the (d — 1)-dimensional Hausdorff measure on dw; since the boundary is
Lipschitz, one obtains that v® is locally finite (cf. the proof of Lemma 3.1 in [6]).
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We assume additionally that the boundary of P-a.e. w is v®-a.e. continuously differen-
tiable, and we denote by R, C dw the set of boundary points where dw is continuously
differentiable.

To avoid complications when cutting a (large) finite piece of the infinite random tube, we
assume that there exists a constant M such that for P-almost all environments o we have the
following: for any x, y € w with |(x — y) - €| < 1 there exists a path connecting x, y that lies
fully inside @ and has length at most M.

For all x € R,, let us define the normal vector n,(x) € S~ pointing inside the do-
main w.

We say that y € @ is seen from x € @ if there exists & € S*~! and #, > 0 such that x +th €
o for all ¢ € (0, tp) and x + toph = y. Clearly, if y is seen from x then x is seen from y, and
we write “x <> y” when this occurs.

Next, we construct the Knudsen random walk (KRW) (¢,,n =0,1,2,...), which is a
discrete time Markov process on dw, cf. Sect. 2.2 of [6]. It is defined through its transition
density K: for x, y € dw

((y =x) -, () ((x —y) -0, (y))

oy I{x,y € Ry, x <>y}, (@)

K(x,y)=va

where y; = ( fSe h -edh)™! is the normalizing constant, and I{-} stands for the indicator
function. This means that, being P,, E, the quenched (i.e., with fixed @) probability and
expectation, for any x € R,, and any measurable B C dw we have

Bylérss € B | £ = x] = / K(x.y)dv*(y).
B

We also refer to the Knudsen random walk as the random walk with cosine reflection law,
since it is elementary to obtain from (2) that the density of the outgoing direction is propor-
tional to the cosine of the angle between this direction and the normal vector.

Remark 2.1 In fact, in the general setting of [6, 7], for unbounded domains, one has to con-
sider the following possibility: at some moment the particle chooses the outgoing direction
in such a way that, moving in this direction, it never hits the boundary of the domain again,
thus going directly to the infinity. However, it is straightforward to see that, since w C R x E,
in our situation P, -a.s. this cannot happen.

It is immediate to obtain from (2) that K (-, -) is symmetric (that is, K (x, y) = K (y, x)
for all x, y € dw); for both the discrete- and continuous-time processes this leads to some
nice reversibility properties, exploited in [6-8]. Clearly, K depends on w as well, but we
usually do not indicate this in the notations in order to keep them simple. Also, let us denote
by K"(-,-) the n-step transition density; clearly, one obtains that K" is symmetric too for
any n > 1.

Now, we define the Knudsen stochastic billiard (KSB) ((X;, V;),t > 0), which is the
main object of study in this paper. First, we do that for the process starting on the bound-
ary dw from the point xy € dw. Let xo = &, &, &, &, ... be the trajectory of the random
walk, and define

Tw=>_l& —&ll.
k=1
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Then, for ¢ € [1,, T,+1), define

t—1,
||$n+1 - Sn” '

In Proposition 2.1 of [6] it was shown that, provided that the boundary satisfies the Lipschitz
condition, we have 7, — 00 P,-a.s., and so X, is well-defined for all # > 0. The quantity X,
stands for the position of the particle at time ¢; since it is not a Markov process by itself, we
define also the cadlag version of the motion direction at time #:

X = gn + (§n+l - Sn)

)

Xie —X
V,=lim¥
el0 &

observe that V, € S¢~!. Recall also another notation from [6]: for x € w, v € S}, define
(with the convention inf ) = 00)

h,(v) =x4vinf{t > 0:x 4+ tv € dw} € dw U {00},

so that h, (v) is the next point where the particle hits the boundary when starting at the lo-
cation x with the direction v. Of course, we can define also the stochastic billiard starting
from the interior of w by specifying its initial position xy and initial direction vy: the particle
starts at the position x, and moves in the direction vy with unit speed until hitting the bound-
ary at the point h,(vo); then, the previous construction is applied, being h,,(vo) the starting
boundary point. We denote by P>V the (quenched) law of KSB in the tube w starting from x
with the initial direction v.
Consider the rescaled projected trajectory Z\*) = s~1/2X,, - e of KSB.

Definition 2.2 We say that the quenched invariance principle holds for the Knudsen sto-
chastic billiard in the infinite random tube if there exists a positive constant & such that,
for P-almost all w, for any initial conditions (xo, vg) such that hy,(vy) € R,,, the rescaled
trajectory 6! zo (w) weakly converges to the Brownian motion as s — oo.

Also, for some of our results we will have to make more assumptions on the geometry of
the random tube. Consider the following

Condition T.

(i) There exists a positive constant & and a continuous function ¢ : R — R? such that

inﬁg lo@) — x| =&, lim ¢(t)-e=—oco, lim @(t)-e=o0.
te t——00 1—>00
xERd\w
(ii) In the case d > 3, we assume that there exist N, r; > 0 such that for all x, y € R, with

|[(x —y) - €| <2 there exists n < N such that K" (x,y) > ry.
(>iii) In the case d =2, we assume that

sup{|(x —y) -€|: x,y E Ry, x <>y} <00 P-as.
Remark 2.3 From the fact that w C R x E and v”-almost all points of dw belong to R,,, it

is straightforward to obtain that for Lebesgue x Haar-almost all (x, v) € @ x S?~! we have
h,(v) € R,, (see Lemma 3.2(i) of [6]).
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Remark 2.4 In the paper [8] we prove that, if the second moment of the projected jump
length with respect to the stationary measure for the environment seen from the particle
is finite (which is true for d > 3, but not always for d = 2), then under certain additional
conditions (related to Condition T of the present paper), the quenched invariance princi-
ple holds for the Knudsen stochastic billiard in the infinite random tube, cf. Theorem 2.2,
Propositions 2.1 and 2.2 of [8]. Let us comment more on the above Condition T:

e In [8], instead of the “uniform D&blin condition” (ii), we assumed a more explicit (al-
though a bit more technical) Condition P, which implies that (ii) holds (see Lemma 3.6
of [8]). In fact, in the proof of the quenched invariance principle the technical condition
of [8] is used only through the fact that it implies the uniform D&blin condition.

e The assumption we made for d =2 may seem to be too restrictive. However, is it only a
bit more restrictive that the assumption that the random tube does not contain an infinite
straight cylinder. As it was shown in Proposition 2.2 of [8], if the random tube contains an
infinite straight cylinder, then the averaged second moment of the projected jump length
is infinite in dimension 2, and so the (quenched) invariance principle cannot be valid.

2.2 Gas of Independent Particles and Evaluation of the Transport Diffusion Coefficient

Now, let us introduce the notations specific to this paper. Consider a positive number H
(which is typically supposed to be large); denote by D%, the part of the random tube w
which lies between 0 and H:

DY ={zcw:z-ec|0, H]}.
Denote also

Fo={xecdw:x-ec (0, H)},

Dy = {0} x ay,

D, ={H} x wp,

so that Bﬁz = ﬁ,‘j U ﬁ[ U ﬁ, (see Fig. 1). Observe that 52 can, in fact, consist of several
separate pieces, namely, one big piece between 0 and H, and possibly several small pieces
near the left and the right ends (we suppose that H > M, so that there could not be two
or more big pieces). It can be easily seen that those small pieces have no influence on the
definition of the transport diffusion coefficient; for notational convention, we still allow ﬁﬂ
to be as described above.

Then, we consider a gas of independent particles in D, described as follows. There
is usual reflection on ﬁ,”j; any particle which hits [A)[ U [A),n, disappears. In addition, for a

Fig. 1 On the definition of finite tube 5%
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given A > 0, new particles are injected in D, with intensity (y4|SY~')~'A per unit surface
area. Every newly injected particle chooses the initial direction at random according to the
cosine law. In other words, the injection in Dy is given by an independent Poisson process
in Dy x Se with intensity |S*'|~'Ale - u| dx du.

Remark 2.5 The choice of the cosine law for the injection of new particles is justified by
Theorem 2.9 of [6]: for the KSB in a finite domain, the long-run empirical law of intersection
with a (d — 1)-dimensional manifold is cosine. One may think of the following situation:
the random tube is connected from its left side D, to a very large reservoir containing the
Knudsen gas in the stationary regime; then, the particles cross D, with approximately cosine
law (at least on the time scale when the density of the particles in the big reservoir remains
unaffected by the outflow through the tube). In Sect. 4 (proof of Theorem 2.8) we use this
kind of argument to obtain a rigorous characterization of the steady state of this gas.

We now consider this gas in the stationary regime. Let E,p := [a,b] x &, and
let M(a, b) be the mean number of particles in D}, N E, 5, in a fixed environment .
In Theorem 2.6 below we shall see that there exists a constant @ such that

M(B=DH = EDEY g
lim limsup max S ) 0G|

0
m—o0 g .o j=l,..m H/m m '

which means that, after coarse-graining, the particle density profile is asymptotically linear.
The above quantity ¢ is called the (rescaled) density gradient.

We define also the current Jj; as the mean number of particles absorbed in ﬁ, per unit
of time, and let the rescaled current be defined as

J:ngnooHJH.

Then, consistently with the discussion in the beginning of this section, the transport diffusion
coefficient Dy 1s defined by
J

Dirans = 5 (3)

Now, suppose that the quenched invariance principle with constant 6 holds for the stochastic
billiard. Our goal is to prove that Dyys is equal to the self-diffusion coefficient Dggjs := 62 /2.
To this end, we prove the following two results. First, we prove that the coarse-grained
density profile is indeed linear:

Theorem 2.6 Suppose that the quenched invariance principle holds. Then, for any ¢ > 0
there exists m such that P-a.s.

M(=DH = DH i—1/2
limsup max S w) - G /2
H—oo J=l...m H/m

(logl)s | <& “

Then, we calculate the limiting current:

Theorem 2.7 Suppose that the quenched invariance principle holds with constant &, and
assume also that Condition T holds. Then, we have P-a.s.

: w1
lim HJj = Exaz(|w0|>P,. (5)

H—o0
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Some remarks are in place that illustrate the significance of the above theorems. Theo-
rem 2.6 means that ¢ = A(|wy|),, and using also Theorem 2.7, we obtain that Dirans = Dl
At the same time it becomes clear that such a statement can be true only asymptotically
since in a finite open tube one has to expect finite size corrections of the mean particle num-
ber. These corrections may, in fact, depend strongly on the microscopic shape of the tube
near the open boundaries. This implies that in experiments on real spatially inhomogeneous
systems some care has to be taken as to what is measured as macroscopic density gradient.
Notice that with Theorem 2.7 we also prove Fick’s law for diffusive transport of matter in
the random Knudsen stochastic billiard. Since the velocity of the particles does not change
at collisions with the tube walls, mass transport is proportional to energy transport. In this
interpretation Theorem 2.7 implies Fourier’s law for heat conduction, see e.g. [2, 14] for
recent work on other processes.

For a function g € C[0, o0) and @ € R, denote

©a(g) =inf{t = 0: (1) — g(0) =a}. 6)

As mentioned in the introduction, in the proof of Theorems 2.6 and 2.7 we use the explicit
form of the steady state for the Knudsen gas in the random tube with injection from one
side. Let us formulate the following theorem:

Theorem 2.8

(i) For the Knudsen gas with absorption/injection in D, U ﬁg (as before, with intensity
(yd IST=1) "'\ per unit surface area) the unique stationary state is Poisson point process
in D‘” S with intensity )L|Sd h=t,

(ii) For the gas with injection in D@ only, the unique stationary distribution of the particle
configuration is given by a Poisson point process in 52 x S9! with intensity measure

)\_|Sd_l|_lp$t’u)’_h[pfa(x . e) < @H*Ot(X . e)]dot dl/i dh

Also, in both cases, for any initial configuration the process converges to the stationary state
described above.

Of course, the above result is not quite unexpected. It is well known that independent
systems have Poisson invariant distributions (with the single particle invariant measure for
Poisson intensity), let us mention e.g. [11] (Sect. VIIL.5) and [16]. Still, we decided to in-
clude the proof of this theorem because (as far as we know), it does not directly follow from
any of the existing results available in the literature.

2.3 Crossing Time Properties

Let us introduce some more notations for the ﬁnite random tube. We denote by J)o the set
of points of w, from where the partlcle can reach D by a path which stays within D“’ and
set Dy 1= {0} x @ (see Fig. 2), and let D“’ C D‘” be the corresponding finite tube. Slnce we
are going to study now how long a tagged partlcle stays inside the tube and how it crosses
(i.e., goes to the right boundary without going back to the left boundary), the idea is to inject
it in a place from where it can actually do it. Our interest is then in certain first-passage
properties, in particular the total life time of the particle inside 5“’ (i.e., the time until the
particle first exits D %) and the permeation time which the particle needs to first exit D“’ at
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Fig. 2 On the definition of Dy, 5“1_’1, and the event € (a trajectory crossing the tube is shown)

the end of the tube segment “opposite” to that where it was injected, i.e., after crossing the
tube.

So, suppose that one particle is injected (uniformly) at random at D, into the tube 52
(that is, the starting location has the uniform distribution in 55, and the direction is chosen
according to the cosine law), and let us denote by €y the event that it crosses the tube
without going back to Dy, ie., Cy = {r(ﬁ,) < ‘L’+(D5)} (here, T and ™ are, respectively,
entrance and hitting times for the discrete-time process, see (20) and (21) for the precise
definitions). Also, define 7y to be the total lifetime of the particle, i.e., if X, is the location
of the particle at time ¢, then 7y =min{r >0: X, € D[ U D,}.

First, we calculate the asymptotic behavior of the quenched and annealed (averaged)
expectation of 7y:

Theorem 2.9 Suppose that the quenched invariance principle holds with constant 6. We
have

1 Sd*l
lim g, 7, = Y ooy o )
i H 2/é0l
. 1 -1 ~ -1
Jim — (B,T3), = 574l (el (a0l ), ®)

Observe that Condition T(i) implies that |@y| is bounded away from 0, and so {|@g| " b <
00. At this point we remind the reader that here and in the next theorem the expected “times”
are actually expected lengths of flight, related through the corresponding times through the
trivial generic relation length = velocity x time. In our Knudsen gas we always assume unit
velocity v = 1 so that times can be identified with the appropriate lengths.

To elucidate the physical significance of Theorem 2.9 we observe that for usual Brownian
motion the expected lifetime T (zo) of particle in an interval [0, L] is given by T (z9) =
z0(L — z0)/(2D), where z; is the starting position and D is the diffusion coefficient. So, in
particular, for a particle starting at the boundary zp = 0 (or at zp = L) the expected life time
is 0. However, in a microscopic model of diffusion in a finite open system, this result cannot
be expected to be generally valid because of a positive probability that a particle which starts
at 7o = 0 would escape through the other boundary at L. Often it is found empirically that
the expected life time can be approximated by

<\ Zo(L —Z2o)
T (z0) = D )
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with an effective shifted coordinate zop = zo + Ay and effective interval length L=L+
2X . The empirical shift length A, is known as Milne extrapolation length [4], for a recent
application to diffusion in carbon nanotubes see [23]. From the definition (9) one can see
that the life time of a particle starting at the origin zo = 0 allows for the computation of the
Milne extrapolation length through the asymptotic relation

. TOwm) Aum
lim = —
L—o0 L 2D

provided the diffusion coefficient D is known.

In a physical system the Milne extrapolation length depends on molecular details of
the gas such as type of molecule or temperature, but in a Knudsen gas also on the tube
surface. In our model the properties of the gas are encoded in the unit velocity v = 1 of the
particles. Observe now that the quantity 7 (1)) corresponds to E, 7y in our setting. Hence,
by identifying H = L and using D = 62/2, Theorem 2.9 furnishes us with the dependence
of the Milne extrapolation length on the tube properties through

_ YIS {wol)p s
2|yl

1
(Am)p = Emsd”|<|wo|>P<|&)o|*‘>p62. (11)

A P-a.s., (10

Interestingly, A, depends only on very few generic properties of the random tube.
The next result relies on Theorem 2.7, so we need to assume a stronger condition on the
geometry of the tube.

Theorem 2.10 Let us suppose that the quenched invariance principle is valid with &, and
assume that Condition T holds. For the asymptotics of the probability of crossing, we have

 al8 18 (o),

lim HpP,[Cy] = ——F7—— P-as, (12)
H—o0 2|y
. 1 1A I
ngnooH<Pw[€H])]p = EVd|Sd 1162 (laol), (|dol ")y (13)

For the quenched behavior of the conditional expectations, we have, P-a.s.

. 1
Jim ?Ew(TH [ Cx) = 352 (14)
. valS"[{laxl)s
lim —E,(7gl{Cy}) = ——F——, 15
Jim B, (Tyl{C) 5] (15)
.1 : valS' ™ [{wol)e
lim —E,(74l{¢y}) = ————, 16
Jim B, (T4{E5) ] (16)
and for the annealed ones
. 1 1
Jim (B (T | €)), = 2. (17)
o1 1 _ -
Jim B (Tl{€n)) = 2yalS™ (ol (150l ), (18)
1 . 1 _ -
Jim B (T, ) = ZyalS (ol ol ™). (19)
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As one sees from Theorems 2.9 and 2.10, all our annealed results in fact say that one
can interchange the limit as H — oo with integration with respect to P. We still decided
to include these results (even though they are technically not difficult) because, in models
related to random environment, it is frequent that the annealed behavior differs substantially
from the quenched behavior.

One may find it interesting to observe that, by (15) and (16)

E, (TuI{Cy D)

———— 7~ 52 as H— oo.
E,(Tg{€y})

To obtain another interesting consequence of our results, let us suppose now that P-a.s. the
random tube is such that we have |@y| = |wo|. Observe that, by Jensen’s inequality, it holds
that

{lool)s (ol ™1, = 1

(and the inequality is strict if the distribution of |wy| is nondegenerate), so “roughness” of
the tube makes the quantities (E, 7y ), and (E,(7zI{€y})), increase. In other words, these
quantities are minimized on the tubes with constant section (which, by the way, do not have
to be necessarily “straight cylinders™!).

The remaining part of the paper is devoted to the proofs of our results, and, as men-
tioned in the introduction, it is organized in the following way. In Sect. 3 we obtain several
auxiliary results related to hitting of sets by the random billiard. In Sect. 4 we obtain the ex-
plicit form of the stationary measure of the Knudsen gas in the finite tube 13“,; by using the
corresponding result from [6, 7] about the stationary distribution of one particle in a finite
domain. Then, in Sect. 5.1, we apply the results of Sects. 3 and 4 to obtain the explicit form
of the transport diffusion coefficient. Finally, in Sect. 5.2 we use Little’s theorem to prove
the results related to the crossing time of the random tube.

3 Some Preliminary Facts: Hitting Times and Estimates on the Crossing Probabilities

We need first to prove several auxiliary facts for random billiard in arbitrary finite domains.
As in [6, 7], let D be a bounded domain with Lipschitz and a.e. continuously differentiable
boundary. We keep the notation P,, to denote the law of our processes, and we still use v to
denote the (d — 1)-dimensional Hausdorff measure on the boundary 0D. Consider a Markov
chain £ on 3D, which has a transition density K with the property K(x,y)=K(y,x) for
all x, y € 9D. Observe that the Knudsen random walk & has the above property, but we need
to formulate the next results in a slightly more general framework, since we shall need to
apply them to some other processes built upon &. Let us introduce the notations

7(B) = min{n > 0: &, € B}, (20)
tH(B) =min{n > 1:&, € B} (1)

for the entrance and the hitting time of B C 9D. Also, for measurable B C dw such that
0 < v¥(B) < oo we shall write
1

Byy_
ol =)

/ P, [1dv®(x),
B

so that P2 is the law for the process starting from the uniform distribution on B.
Taking advantage of the reversibility of the process &, we prove the following
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Lemma 3.1 Consider two arbitrary measurable sets B, F C 0D such that BN F = ().

(1) Suppose that v®(B), v*(F) € (0, +00). For any F' C F, we have

P2[&r) € F'| ©(F) < T (B)]

= 1 =+ ®
= BB (F) <7 (B)] /F Bulr(B) < TH (BN V()

— 1 Y + ®
= ST =T ] Jp BAF B < T ENA ). 22)

(i1) Suppose that v®(B) € (0, +00). For any B’, B” C B, we have
/ P! [+ € B", tT(B) < T(F)]dv®(x)
B/
:/ P! [&.+) € B',TH(B) < T(F)]dv®(x). (23)
B//

One immediately obtains the following consequence of Lemma 3.1(ii):

Corollary 3.2 Forany B, F C 0D such that BN F =@ and v*(B) € (0, +00), we have the
following.

(i) For x, Yy € B, let us define the conditional (on the event {t7(B) < t(F)}) transition
density Kg p(x,y):

P, [6x+p € B" | T7(B) < T(F)] =/ K r(x, ) dv®(y).
B//

Then, we have
PE[tT(B) < T(F)1Kp r(x,y) =Pt " (B) < T(F)Kp r(y, x),

that is, the random walk conditioned to return to B without hitting F is reversible with
the reversible measure v§, . defined by

d w
UBF (¢)= P [t (B) < t(F)].
dv®

(ii) In particular (take F = ) in the previous part) the random walk observed at the mo-
ments of successive visits to B is reversible with the reversible measure v*.

Proof of Lemma 3.1 Abbreviate for the moment U :=D \ (B U F). First, write using the
fact that K is symmetric

PE[t(F) <t (B)] =) PE[t(F)=n.1"(B)>n]

n=1

v [ dv(xo) Y )
_;/B v*(B) Un—ldu (1) ... dv® (xp-1)
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~ v2(B) 4

_Ve(F)
~ v2(B)

Then, similarly

X / dv® () K (x0, x1) .. K (cuy, X))
F

yn—1

V) S [ dv? () .

vw(B);/F Vo) o @O

X/de(XO)IZ(Xn,Xn_l)...K(Xl,X())
B

Ve (F)

ZPZ[T(B) =n,t(F) >n]
=1

PPle(B) < tH(F)].

Poléur) € F'| T(F) <t7(B)]

1

Polt(F) <t+(B)]

v*(B)

n=1

i/ D) [ gy
V“’(F)Pg[f(B) < 'E+(F)] = B U‘“(B) v (x1)~-

yn—1

X / dv®(x,) K (xg, x1) ... K (X1, X,)
F‘/

1

0 (22) is proved.

y + w
T Ve (F)PL[E(B) < TH(F)] /F Folt(B) < (N0,

Ldv?(xy)

Y PAr(F)=n.&r € F, 75 (B) > n]

. de(xn—l)

Let us prove (23). Analogously to the previous computation, we write

/ P! [&+m) € B”, tH(B) < T(F)]dv®(x)
B/

:/ dv®(x) Y Bi[Ecs) € B, TH(B) =n,T(F) > n]
B/

n=1

:Z/ dv®(xo) dv®(x1)...dv®(x,_1)
=l B’ Un—l

></ dv® (x,) K (x, x1) ... K (Xp—1, %)

=Z/ dv®(x,) dv®(x,_1)...dv°(x;)
n=1 B”
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X / dv® (x0) K (X, Xu1) ... K (x1, X0)
B
:/ P [+ € B, tT(B) < t(F)]dv’(x),
B
and (23) is proved. This concludes the proof of Lemma 3.1. ]
Next, we recall the Dirichlet’s principle:

Proposition 3.3 Consider B, F C 3D with BN F = { and v*(B) € (0, +00), and denote
h(x) =P} [t(F) < t©(B)] (so that, in particular, h(x) =0 for all x € B and h(x) =1 for
all x € F). Define

H={h:h(x)e[0,1],h(x)=0forall x € B,h(x) =1 forall x € F}.

Then

20°(B)PE[¢(F) < 17 (B)] =E(h, h) = min € (h, h), (24)
where

E(h, h) 2/ . K (x, y)(h(x) = h(y)* dv®(x) dv®(y). (25)
D)

Proof For the proof, we refer to the discrete case, e.g. Proposition 38 in [1], and observe that
the proof applies to the space-continuous case, using that, on general spaces, harmonicity
in the analytic sense and in the probabilistic sense are equivalent notions by [5]. Indeed,
minimizers h of the Dirichlet form are harmonic in the analytic sense, i.e., they belong to
the kernel of the form (see (2.10) in [5]), though the left-hand side of (24) is the value of
E(h, h) when h is harmonic in the probabilistic sense, i.e., the expectation of the process at
some exit time (see Theorem 2.7 in [5]) with the appropriate boundary conditions. ]

Now, we go back to the Knudsen random walk in the random tube w. Recall that K"
stands for the n-step transition density of KRW, and that we have K" (x, y) = K" (y, x) for
all x, y.

Let us define for an arbitrary A C R

F?(A)={x €dw:x-ec A}.
In case A is an interval, say, A = [a, b), we write I:"“’[a, b) instead of F‘”([a, b)). There
is the following a priori bound on the size of the jump of the random billiard: there exists

a constant y; > 0, depending only on M = diam(E)/2 and the dimension, such that for
P-almost all w

P,[I(&1 — &) -el > u | §=x] < ="V, (26)
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for all x € dw, u > 1, see formula (54) of [8]. Moreover, using (26), for any n > 1 it is
straightforward to obtain that, for some )71(") >0

P, [I(5, — &) - €| > u | & =x] < 7" u"D, 27)

for all x € dw, u > 1 (also, without restriction of generality, we can assume that )71(”) is
nondecreasing in n).
Now, with the help of the above formula we prove the following result:

Lemma 3.4 For any n > 1 there exists )72(") > 0 such that for all u > 1 and a € R we have
/ dv® (x) dve (K" (x,y) < 7y u= 4D, (28)
I:““’(—oo,a) ﬁ“’(a+u.oo)

Proof Abbreviate V = {a + u} x w,1,. The main idea is the following: if at some step the
Knudsen random walk jumped from some point of Fo(—00,a + u) to F®[a + u, 00), it
must cross V, so the probability of such a jump is the same as the probability of the jump
to V in the semi-infinite tube with the boundary F®(—00,a+u)UV. So, we obtain

f dv®(x) [ dv?(y)K"(x, )
F®(—00,a] F®la+u,00)

:/~ P [£, € F[a + u, 00)]dv®(x)
F®(—o00,a]

n
5/ P U{Ek-eZa—i-u,Sj-e<a+uforallj<k} dv®(x)
F®(—00,a] k=1

F@(—00,a] k=1 Y (F®(—00,a+u)k-!

5/ dv“’(xo)Z/ dv®(xo) . ..dv® (xe_1)
x[ dv®(x; ) K (xg, x1) ... K(xp_1, x)
F®la+4u,00)
5/~ de(x)/de(y)(K(x,y)Jer(x,y)+---+K"(x,y)).
Fo(—00,a] v

By symmetry of K, we have for any m

/ dV”’(X)/ dv? ()K" (x,y) :/ P) &y -e <aldv®(y),
Fo(—00,a) 1% 1%
so Lemma 3.4 now follows from (27). O

Let us consider a sequence of i.i.d. random variables Z;, Z,, Z3, ... with uniform dis-
tribution on {1,2,..., N} (where N is from Condition T(ii)), independent of everything.
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Also, let us define &, := &7,+...+z,- Then, it is straightforward to obtain that, for any x € dw
and BC{ye€odw:—1=<(y—x)-e=<1}, wehave

P*[£; € B]> N~'r)v”(B) (29)
for some r; > 0. Let
1 N
K =—> K/
(x,y) N 2. (x,y)

be the transition density of the process (é,,, n > 0). Observe that this process is still reversible
with the reversible measure v®, so that Ie(x, y) = Ie(y, x) forall x, y € dw. Similarly to [8],
let us define

b(x) = Ej((51 —x) - )’

= | (=2 -e*Kx, ), (30)

dw

and
b(x) = B (57, — x) - €)*

= | (=2 eKEx Q). 31)
w
We suppose that 7(B) and t+(B) are defined as in (20)—(21) but with & instead of £, and let
7(B) and T (B) be the corresponding quantities for the process &.

Lemma 3.5 Suppose that B, F C 0w with v*(B) € (0, 00). Moreover, assume that x -e < a
forallx e B,andy-e > a+u forall y € F (of course, the same result is valid if we assume
that x -e <a forall x € F,and y -e > a + u for all y € B). Then, there exist positive
constants Vs, V4, such that

W BYRE[(F) < T+ (B)] < @) 4 / b A, (32)
u I:"“)[a,LH—uJ
and
PERIEE) < BN < [ hwarw. o)
u Fela,a+u]

Moreover, (32) and (33) are valid also in the finite tube 5’;_’, (in this case we assume that
a>0anda+u< H).

Proof We keep the notation £(-, -) for the Dirichlet’s form with respect to K, defined as
in (25). Suppose without restriction of generality that a = 0 and define the function

0, ifx-e<0,
h(x) =11, ifx-e>u,
ul'(x-e), ifx-ee(0,u).
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Using Proposition 3.3 (observe that # € H) and Lemma 3.4, we obtain

20°(B)PE[t(F) < t™(B)]
<&, h)

_ / ) dv (K (6, ) () = h(y)?
(0w)
—2 f ) [ DMK,y
F?(—00,0) F?(u,00)
+u_2/— dv? (x)dv° () K (x, y)((y — x) - €)*
(F*[0,u])?
o / dw [ ARGy e
F®(—00,0)

Fe[0,u]

+2/ dv®(x) dv? (MK (x, y)(1 —u'x - e)?
Fol0,u] Fe(u,00)

< 2)73u7(d7') + 2u72/

Fel0,u]

dV‘”(X)/ dv? (K (x, )((y = x) - )
dw

1
=2pu" "D 4 —/ b(x) dv®(x),

2 ~
U= Jrea,a+u)

and this proves (32). The proof of (33) is completely analogous. O

We now work in finite tube 5@. Let us use the abbreviations U, = F°[n — 1,n), and
V, = F°n, H yu ﬁ,. Observe that, by Condition T(i), we have that for some 5 € (0, +00)

LUAESZ (34)

for all n and for P-a.a. w.

To distinguish between the seconds moments of the projected jump length in finite and
infinite tubes, we modify our notations in the following way. For x € Bﬁz, let by (x) and
l;H (x) be the quantities defined as in (30) and (31), but in the finite tube ’5‘;’,. Let us use the
notations b, (x) and 1300 (x) for the corresponding quantities in the infinite tube. Now, we
need an estimate on the integrals appearing in the right-hand sides of (32) and (33), for the
case of the finite tube:

Lemma 3.6 Suppose that 0 < 51 < s, < 1 and assume that d > 3 and Condition T holds.
Then, we have

1
limsup — by(x)dv®(x) <oo P-a.s., (35)

H—o00 Fels)H,sH]

and the same is valid with EH on the place of by .
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Proof Let us recall some notations from [8]. Define
S ={(w,u):weQ,ucdw}.

Define the probability measure Q on G by
dQ(w, u) = KO " du,o ) dP(w), (36)

where u is the (d — 2)-dimensional Hausdorff measure on the boundary of wy, ko, is the
scalar product of the normal vectors pointing inside the section and inside the tube (see
Sect. 2 of [8] for details), and Z = [, dP [« Ydpug () is the normalizing constant. In
Lemma 3.1 of [8] it is shown that Q is the invariant law of the environment seen from the
walker, that is

(Bolf 0g,c0,UE) | 0 = (O, u)]>@ = (flg- (37)
Using also that
S (G — %))’ <n Y EL((E —&-1)
k=1

and (37), it is straightforward to obtain that (bo), < 0o implies (l;oo>
notations of [8], by the ergodic theorem we obtain

< 00. So, using the

Q

1

boo(X) dV®(x) = / doz/dua(v)/c_lboo(eaw,v)
H F[0,H]

— (boo)Q as H — oo, (38)

a.s. and in L', and the same with b on the place of by Then (35) follows from the fact
that, for all H, by (x) < by (x) for all x € F “. Now, with boo instead of b, the previous
inequality is not necessarily valid. So, to prove (35) for b u instead of by, consider x € dw
such that H~!(x - e) € [sy, 5»], and write (note that for all x € 85‘;} we have l;H(x) < H?)

[Bi () = boo(x)| < 2P| max| (6 — )¢l = (51 A (L= s2))H Y]
< C H @
(recall that d > 3), and then we obtain (35) for b  as well. U
Next, we obtain a lower bound for certain escape probabilities:

Lemma 3.7 Suppose that H/4 <n < H — 1, and m < n. Also, assume that d > 3 and
Condition T holds. Then, there exist positive constants Y7, Vs, such that

BUMIE(V,) < 2T (U] = (39)

and

PP [2(V,) < #H (D) = g (40)
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Proof Let £ be the Dirichlet form corresponding to K (cf. (25)). First, let us prove (39). As
in Proposition 3.3, we use the notation h(x) = PX[T(V,) < T(Un)]; observe that h(x) =0
for all x € U, and h(y) =1 for all y € V, (and hence for all y € U,+1). Using this fact
together with (34) and Cauchy-Schwarz inequality, we write (abbreviating u :=n — m)

20°(U,)PU [2(V,) < £H (U]
=&, h)

>Zf

v (x)) / v () R (o )R — By
m+j+1

m+j
u+1
(Huw(Umﬂ)) / dv®(xo). .. f dv® (X,11)
j=0 Un Untu+1
XY VO Uy IV Ui 1) K (o xj) (hx)) — hxj 1))
j=0
u+1 -1
> Nlrl);sz(l_[vw(Um+j)> / de(xo)
j=0 Un,
u
o ) N
Un-tu+1 j=0
~ u+1 -1
N2 [ / f
> —2 v?(U,, dv®(xp) ... dv®(x,
== ]'[ Ouip | J G0 | )
_ N’lr])75
T n—-m+1’

and this proves (39). By denoting fz(x) =PI[T(V,) < f(ﬁ[)] and writing

20°(D) P2 [2(V,) < £ (Dy)]

n+1

> Z / dv® (x)) / dv® (i) K (e x ) () — hiagi))?
Ujt1
+ / dv?(xo) | dv®(xD)K (xo, x1) (o) = h(x1))?
Dy U
in exactly the same way one can show (40). This concludes the proof of Lemma 3.7. u

Next, we need (pointwise) estimates on the probabilities of exiting the tube at the left
boundary:
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Lemma 3.8 Assume Condition T and d > 3. Suppose also that n € (%, %), andm € (0, n].
Then, there exists Yo such that for all x € U,, we have

pLlE(y <t < PO 1)

Proof From now on, we assume for technical reasons that m > % (in any case, otherwise
the upper bound 1 is good enough for us). First, by Lemmas 3.5 and 3.6, we obtain that

PUn[2(Dy) < tH(Up)] < % 42)

Next, Lemma 3.7 implies that

C
PU[E(Vy) < F(Un)] 2 ———. (43)
n—m+1
Also, from (29) it is clear that for any x € U,, we have
Y[ (Un) < (DU V)] = PLE € Uyl > Cs (44)

for some C; > 0.

Now, denote oy = T (U,,), 0x+1 = min{j > oy : éj € U,,} to be the successive times when
the set U,, is visited. By Corollary 3.2(i) and (44), we obtain that, conditional on not hitting
ﬁe U V,, the process of successive returns to U,, is reversible with the reversible density
7,, (x), such that for all x € U,

C4 =< 7Tm(x) < CS

for some positive constants Cy4, Cs. Using also (42) and (43), we obtain that there are con-
stants Cg, C7 > 0 such that for any k&

Un12 (D s+ ~ A &
P,"[T(D0) <77 (Un) | 1D U V) > 0] = 7,

G

PUn[(V,) < i1 (Up) | £(DeUV,) > 03] = ———.
n—m+1

So, we can write
PUn[2(Dy) < (V)1 =Y _PU"[2(Dy) < 2(V,) | £(De U V,) € (011, 0]
k=1

< B [E(D U Vi) € 11, n]

o0 Ce/H Um
kZ:;C#(n— —|—1) [t(D‘fUV)E(Gk 1 0]

_ CeCi'(n—m+1)
= o :

(45)

Now, the “pointwise” version of (45) is substantially more difficult to prove.
Consider a sequence of i.i.d. random variables ¢, € {0, 1} with

Plg =11=N"r7ps
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(recall (29) and (34)). Then, one can couple the random sequences (é,,, n>1) with ¢ =
(¢u, n > 1) in such a way that when the event {¢, = 1} occurs, é,, has the stationary distrib-
ution on Uy . We denote by P, and E, ; the probability and expectation with fixed w
and ¢, and let E¢ be the expectation with respect to ¢. One can formally define P,, ; in the
following way. For any x € U;, define the transition density R, by

K(-xvy)s 1fy¢Ula

K(x,y)— ¥ nis ify ey,

(1 =N"'rp)R(y) = {
U(U(U’.) ’

Let R, be the distribution on dw with the density R,, and let I/; be the uniform distribution
on U;. Then, given &§,_; = x € U;, the law of &, under P, , is given by

{g, = 1}t + 1{, = O} R

Also, let us define kK = min{n > 1:¢, = 1}.
Now, observe that

[€;-el=1[_1-€] on{j=gk) 46)
and, for i such thati < j,
Ef(PZ’{[Kéi —&) el >u] |k =)
= E{(Pz),gﬂ(gi —&_1)-e[>u]l=0)
<;PJ€[(A_ P ) > ]
- P{[;i:()] w | El _&_171 -e|_u
< Cgh™@=D, )

recall (27). Then, write using (46) and (47)

ER) o[ max| — &) el =]
Le<k

Il
.Mg

<
Il
—_

Pl = J1ES (1 [ max b — ) -el =] 1 = )

Pl

M

J1E® (P},  [there exists i < j such that

.
I

x |(& —&-1)-e|>s/j]1&=j)

= lrn PR s\ ~@=h
> Pk = ]]JC9<—.)
=1 J

IA

[e]
= Cos™ DY jPA IR = j]
j=1

= C]()Si(dil). (48)

Now, using (48), we have for an arbitrary x € U,,
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P [£(Dy) < (V)]
= EgPﬁ),:[‘f(ﬁg) < f(Vn)]

< Eipjm[magq(x —£)-e| < H/16,#(Dy) < f(vn)]
J=K
+ Eij;,{[magq(x —£) el > H/16]
J=<Kk
< E'P, [ma;{ ((x —&;) -l < H/16,2(Dy) < f(vn)] +CLHTY (49)
J=K

Let us deal with the first term in (49). We have, taking advantage of (45) and (48) (recall
that d > 3)

ER}, [max| (v — &) el < H/16,#(D) < 2(V,) |
J=K

< Y ER (&)= £]RY (D) < (V)]
(>H/16

Cpo(n—m+4+1) orep
s”TZElpw_g[[mze]

£>m

n Z Co((m—m+1)+@m—1)

7 E°P;, [[&]=1]

%§K<m
- Ci(n—m+1)
- H

)

and this concludes the proof of Lemma 3.8. ]

Next, we prove a result which shows that it is unlikely that a particle crosses the tube ﬁz
“too quickly”. Suppose that one particle is injected (uniformly) at random at D, into the
tube 1’52, and we still denote by €y the event that it crosses the tube without going back
to bg, ie., Cy = {r(ﬁ,) < T+(b[)} (one can see that there is no conflict with the notation
of Sect. 2.3). Also, recall that 7 stands for the total lifetime of the particle as defined in
SAect. 2;3’ i.e., if X, is the location of the particle at time ¢, then 7y = min{t > 0: X, €
D,UD,}.

Lemma 3.9 For any € > 0 there exists (large enough) m with the following property: there
exists large enough Hy = Hy(w) such that for all H > H,

A I3
PoEy, Ty <m™'H?] < T (50
Proof For H,m, e; > 0, we say that x € dw is (H, m, £;)-good if

pg[ sup |(X,—x)-e|<H/4]zl—81. (51)

t<m~1H2
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Let L € Z be a large positive parameter to be specified later; for n € Z denote I, =
F®[nL,(n+ 1)L); denote also

Zf‘ ={x el,:xisnot (H,m,é&;)-good}.

Now, consider first the case d > 3. From now on we suppose that m is sufficiently large to
assure the following:

P[sup |B,|<1/4]21—%,

t<m~!

where B, is the standard Brownian motion and P is the corresponding probability measure.
In this case, if the invariance principle holds, then for any fixed &, > 0 every x is (H, m, &)-
good for all large enough H. Using the monotone convergence theorem, it is straightforward
to obtain that for fixed L, m, €, &, there exists large enough H, such that for all H > H,

Pve(ly') < &] > %. (52)

Then, by the ergodic theorem, there exists large enough Hy such that for all H > Hj there
exists ng = no(H) such that I,, C F*(H/4,3H/4), and v“’([,fé) < &.

Now, let us consider also the event éH ={T (Vi) < f*(lA)@)} (that is, with respect to the
process é, the particle enters V;,, before coming back to ﬁg). Then, write

PPy Ty <m ' H?] < P2 (&Y. Ty <m™ HY] + PDr[E,, ¢y

IA

pOE PP Ty <m T H? | &y

+ PP e, PP Es, | ey, (53)

Now, by Lemmas 3.5 and 3.6, we can write for some C; > 0

max([€q]. B [En]) < —. (54)
Then, from (27) we obtain that
pDU[E<, | €yl < sup p;;[ma;c & -e—H| > H/4] < CyH@D (55)
N J=

xeDy

for some C, > 0. So, to complete the proof of (50), it remains to prove that the term
PP [Ty <m~'H?| €y in (53) is small.
To do this, let us recall that, by Lemma 3.1(i), for any F’' C Viny» We have

/

P2 €t (v, € F' | &) = (v (D)P2[E4]) / PI[£(De) < 2 (Vi) 1dv“(y).  (56)
By Lemma 3.7, we have that for some C3 > 0

(v (DoP2[E,1) " < C3H. (57)

For j > 1 denote S; = D,UUU---U U;. Using Lemma 3.8, we can write for any y € Vp,,
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P [(Dy) < (Vi) = / K (,2)P5[£(Dy) < T(Vin)1dv®(z)

dw

< / K(y,2)dv®(2)
Dy

Lng ~ .

V9(Lno—J+1)/ -

270 TP Ry, z)dv?
+; - ) 0. 2)dv°(2)

~ Lng

< %;/S R0, 2dv* (). (58)

So, by (27), in the case d > 3, we obtain from (58) that for some positive constant Cy
A C
P2 (De) < ¥ (Ving)l < —
H
and, by (56), (57), and the construction of n, we obtain that

Pgi [E2(viny) € [°1 | €yl < C3Cats. (59)

no

Next, integrating (58) over V, \ I,,, we obtain from Lemma 3.4 that

~ Lng
PY[13(D 2 VL) ]dve () < 2 / dv® fd“’I%,
/vno\:nO Wl T(De) < T7(Ving)1dv®(y) < sz:; . v (y) ; v (2K (y,2)

zo\lno

~ Lng
C
= =P Y (Wno+L— T
j=1

A
=
=
=

Again using (56), (57), we obtain that
PO [E2V10) € Vg \ ng | €] < C3CoL ™72, (60)

So, (59) and (60) imply that for any &3 > 0 there exists large enough L such that for all large
enough H we have

ple [§2(vig) € Ing \i:(i | Syl =1—e5.
But then, since all x € I,,; \ i,fg are (H, m, g1)-good, from (51) we obtain that
POTy <m ™ H? | €y < 1— (1 —e)(1 —&3). 61)

Using (54), (55), and (61) in (53), we conclude the proof of (50) in the case d > 3.
Let us prove the lemma in the case d = 2. Take

L=sup{|(x—y)-e|:x,yeRw,x&y}.
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Note that by (x) < L2, so Lemma 3.5 implies that PQZ [€x] < C;H! for some C; > 0. By
Condition T(iii) we obtain that

PHD)K [%—f’(VL,,O) € Vno \ Ino | Q:H] = Oa
and, since for any x € I;,,, y € F“’[O, L(ng — 1)) we have K (x, y) = 0, we then obtain

Po (Et ) € I \ I} 1 €l = 1 — &4

for a small &4 > 0. The proof of (50) in the case d = 2 then follows in the same way. O

4 On the Steady State of the Knudsen Gas

In this section we prove the theorem that characterizes the stationary regime for the Knudsen
gas in a finite tube.

Proof of Theorem 2.8 In order to prove item (i), we consider the process with absorb-
ing/injection boundaries in both f)g and ﬁ, (that is, the injection is given by two independent
Poisson processes in Dy x S, and D, x S_, with intensities [S¢~"|~"A|e - u| dx du in both
cases).

Fix a sequence of positive numbers u; " oo such that Auy € Z for all k. For each k,
consider a domain @, with the following properties

o DY C ¥, FY Cady, (D, UD,) C Py
o 1D =us; o A .
e any segment ab witha € D, U D,, b € 9®; \ Fj; has length at least uk/( )

(one may construct such a domain e.g. as shown on Fig. 3). Now, let us consider Au; in-
dependent particles in ®;. By Theorem 2.4 of [6], the unique invariant measure of this
system is product of uniform measures in location and direction. We are going to compare
this process (observed only on 5@) with the process with absorbing/injection boundaries in
both 13( and ﬁ, (naturally, we assume that the injection is with the cosine law and with the
same intensity mentioned in Theorem 2.8. Let E be the expectation for the above process

in ®; with Au, particles, with respect to the invariant measure. Also, we denote by E; the

=

Fig. 3 On the construction of domain ®;
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expectation with respect to the process with absorbing/injection boundaries in D, U D, at
time ¢, with the initial configuration chosen from the Poisson point process in ﬁ;} x S4-1
with intensity A|S?~!|~!.

Let ¢ be a function on 5‘,;,’ x S4!, taking values on the interval [0, 1]. For a configuration
n=(X1,01,...,%,v,) in D% x S~ (which means that we have r particles with positions
Xlyeoi Xy € ’5‘;} and vector speeds vy, ..., v, € S9!, write

v =[]v. .
j=1
Denote also by
&:A; Y(x,v)dxdv

SN

the mean value of { on ﬁ“b’, x S,
Clearly, we have

o )\‘ D J
Eovr(n) =ﬂ”>m2( Pl
=
=exp (MDY (¥ — 1)). (62)

Also, it is straightforward to obtain that

Ay o\ J o |\ Mk—J
EOpay =Y (“.”‘) ('Z;—f') (1 - %) P, 63)

=0~/

Since, as k — 00, the binomial distribution with parameters Au; and |D“) |/uy converges to
the Poisson distribution with parameter )L|D“’ |, for any i we have

Jlim E®y(p) = Eoy (n). (64)
Now, let us fix #; and prove that for any ¢ > 0

|[EOY () — Egy ()| <e (65)

for all large enough k. For this, denote by N (#,) the total number of particles which
entered ﬁg through the right boundary D, up to time fo. For the process with absorp-
tion/injection, an elementary calculation shows that N (¢y) has Poisson distribution with
parameter (y,|S¢! |)")Lt0|ﬁ,|. Let us suppose without restriction of generality that 7y <

u i/ @9 and denote

O(fy) = {(x,v) e RY x S(_e) @ there exists ¢ € [0, fp] such that x 4- vt € D b

observe that © (fp) C &y X S(_¢).
Now, a particle starting in x € ®; \ Dy with the direction v will cross D, by time f,
iff (x, v) € O(1y). So, it is straightforward to obtain that, for the process in ®;, the random

variable N (#y) has the binomial distribution with parameters Au; and % which
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converges to the Poisson distribution with parameter (y,|S?~'|)~'Ato| D, | as k — co. Then,
conditioned on {N®)(t)) = n}, for both processes the n entering particles to D, (seen as
a point process on ﬁ, X S—e) X [0, fp]) are independent, each having density f(x,v,t) =
ty ! Iﬁ,lflydlv - ¢|. Observe that the same considerations apply also to the particles which
enter through bg. To obtain (65), we use now the following coupling argument. First of all,
as we already know, the initial configurations restricted to 5‘;} for both processes can be
successfully coupled with probability that converges to 1 as k — oo. Then, by the argument
we just presented, the same applies for the process of particles entering through D, UD,.
This shows that, with large probability, both processes can be successfully coupled.

Now, combining (64) with (65) and using the fact that a point process is uniquely deter-
mined by its characteristic functional (cf. e.g. Sect. 5.5 of [10]), we obtain that the Poisson
point process in D% x §¢~! with intensity A|S?~'|~! is invariant for the Knudsen gas with
absorption/injection in ﬁ, U b[.

As for the convergence to the stationary state and the uniqueness, this follows from
an easy coupling argument. Indeed, consider one process starting from the invariant mea-
sure defined above, and another process starting from an arbitrary (fixed) configuration.
The initial particles are independent, but the newly injected particles are the same for both
processes. Then, since any fixed particle will eventually disappear, the coupling time is a.s.
finite, and so the system converges to the unique stationary state. (Using Theorem 2.1 of [6],
with some more work one can show that, for fixed tube, this convergence is exponentially
fast; however, we do not need this kind of result in the present paper.) This concludes the
proof of the part (i).

Let us prove the part (ii). Still considering the process with absorption and injection in
D, U Dy, suppose that the particles entering through D, are coloured red, and the particles
entering through lA)g are coloured green. So, we need to compute the stationary measure
for green particles. Using the (quasi) reversibility of Knudsen stochastic billiard (see The-
orem 2.5 of [6]), we obtain that, given that there is a particle in x = (o, u) with the vector
speed h, the probability that it is green equals

PO (X - €) < (X - ©)].

Using also the part (i), we obtain that, for the gas with injection only in Dy, the stationary
measure is that of Poisson point process with intensity

)\'|Sd71 |f1PgX.M)<,*h [@—Q(X -e) < PH—« (X -e)]dadudh.

Note also that convergence and uniqueness follow from the same coupling argument as in
part (i). This concludes the proof of Theorem 2.8. O

Let us observe also that Theorem 2.8 allows us to characterize the stationary measure for
Knudsen gas where the injection takes place from both sides, but with different intensities
(which are constant on D, and D,). We have

Corollary 4.1 Consider now Knudsen gas with injection from both sides, with respective

intensities (yv4|S ') "'A and (y4|S"' )" i on bg and ﬁ, (without restriction of generality,
let us suppose that . > ). Then, a Poisson point process with intensity measure

ST (1 + (= RS oo (X - €) < pry_o(X - €)]) dadu dh

is the steady state of the Knudsen gas.
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Proof Indeed, one may imagine that particles of type 1 are injected from both sides with
intensity (y4/S"'|)~'u and particles of type 2 are injected only from the left with inten-
sity (y4IS*')~'(A — ), and use Theorem 2.8. O

5 Proofs of the Results on Transport Diffusion and Crossing Time
5.1 Proof of Theorems 2.6 and 2.7
For integers i, j, £ > 0 define
R j(g) =1{p-i(g) > p;(©)},
Gij(g) =I{pi(g) <L, 0i(g) <p—_;j(g}

Let B be a Brownian motion with diffusion constant &, starting from the origin; we define
(being E the expectation with respect to the probability measure on the space where the
Brownian motion is defined)

i

R, j=ER; ;(B9)= ,
J J(B) P

Gi,j,l = EGi,j,l(B(&))

to be the probabilities of the corresponding events for this Brownian motion.
Fix an integer m. For (z, h) € w x S~ and &, > 0 define

TS (z,h) = inf{sg > 0: [E*"R; ;(Z¥) — R; | <&y,
|Ez’hGi,j,m(2(s)) - (N;i,j,m| <éy,
foralli, j > O such thati 4+ j =m, and all s > 50}. (66)

Intuitively, T (z, h) is the scaling factor one needs to use in order to assure that the rescaled
(and projected on e) trajectory of the Knudsen stochastic billiard stays sufficiently close to
the Brownian motion.

By the portmanteau theorem, observe that, if the Knudsen stochastic billiard starting from
(z, h) satisfies the quenched invariance principle, this means that for any &; > 0 it holds that
T (z, h) < oo. Since, for P-almost every w, the invariance principle holds for a.a. starting
points (z, k), we have

/dIP’lSd‘1|‘1|wo|‘1/ du/ dhT{T (0, u), h) < oo} =1.
Q g gd—1

By the monotone convergence theorem, we obtain that for all &, &, > O there exists f, ,,
such that

/dmsd*‘rwwor‘f du/ AT (O ) <10, 0} = 1 — 600 (67)
Q w sd-1

So, using the Ergodic Theorem, we obtain for almost all w and all H large enough

SN @ ) € Dy x ST T2 B > ey )] < 282 H [l (68)
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Then, by Theorem 2.8, we can write

b

M(a,b) = 1S 1! / da/ du/ dh P o (X -e) <pu_o(X-e)].  (69)
a Wy §d—1

Now, let us prove that the rescaled density gradient is given by ¢ = A{|awpl);.

Proof of Theorem 2.6 Fix an arbitrary ¢’ > 0 and suppose that m is a (large) integer. Con-
sider the quantity #,,-> ,,—> defined by (67), and suppose that H > mt;l/} 2,2 18 large enough
to assure that (recall (68)) ’

IS (2, ) € DY x STV TS (2 h) > 1y, 2| < 2m’2H<|a)o|)P. (70)

Abbreviate ¢ := (H/m)? and consider any integer j € [1, m]. Suppose that h € S9!,
z € 5 are such that z - e € [W, W], and Ta’)”_z(z,h) < t,-2,-2. Then, since
z” . from (66) we obtain that

m =2,

P L o(X-€) < pu_re(X-€)] < Pi'p_((Z9) < 9,(Z9)]
=ES"(1 = Ryj ;(Z¥))

= L +m~?
m
i+ 1
<1 1)
m
and
P 9o (X ) < p—ce(X -1 = P [ (nj11)(Z¥) < ;1 (Z)]
= Ef;h(l - Rm—j+1,j—1(2(w)))
> —j —1 — m_2
T om
j—2
=1z (72)
m
Also, by the Ergodic Theorem, we can choose H large enough so thatforall j =1,...,m
Dy N E g d m. (73
ﬁ’ H “l(’}lwv%l‘ |w0| T | o a—(|w0|> . (713)
So, by (69), (70), (72), (73),
m —HH —j+1H
_M<(m DH m—j+1) >
H m m
m j—2H . .
Zh— X —— —({laol)y —m™" —2m™ (Jwol)p)
H m m
J _
Zk;(lwol)]l) — am (14 4(|wol)p).- (74)

Analogously, using (71) instead of (72), we obtain
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mM<(m—j)H’ (m—j—l—l)H)

ﬁ m m

<A™ o2 H (ol + 27 x I E Gl 4 m)
— X im [0 — X — — (0] m
~-H 0l/ H m m 0l/p

J _
= 22 {lool)s +Am ™ 2+ 3{wol),). (75)
Then, we obtain (4) from (74) and (75), and so the proof of Theorem 2.6 is concluded. [
At this point, let us formulate an additional result which will be used in Sect. 5.2.

Proposition 5.1 Define
jm
H
M =8 . da/ du/ dh P Mo (X -e) < pu_o(X -e)]
! j;lm Wy §d—1
x PO M op_o(X -€) < p_a(X - ©)], (76)

and suppose that the quenched invariance principle holds. Then, for any &' > 0 there exists m
such that P-a.s.

M A —1/m—j+1/2
limsup max |-t — M Z1/Dm=j+ /)<|w0|>lp <. 7
Hooo j=lem |H/m m
Proof The proof is quite analogous to the proof of Theorem 2.6. ]

Now, we calculate the limiting rescaled current.

Proof of Theorem 2.7 First, we obtain an upper and a lower bounds for G; j.m» Where
i + j =m. By e.g. the formula 1.2.0.2 of [3], we have

P[ (B(é')) <t] ! |a| az d
= exp( — s.

B - 0 A2m6s3? P\ 72525

So, for i <m3/3

Gijon = Plpi(B®) <m] — Plp-;(B?) < p:i(B)]

m : 2
> 5 ! ~ L as. 78
> —m +/.S T exp( 282s> s (78)

Also, forany i =1,...,m,

Gijm < Plpi(B) <m]

m i i2
= — ds. 79
/0 276532 exp( 2&2s> y (79)

In particular, for i > m>/>, we obtain after some elementary computations that there exists a
positive constant y’ such that

3/5

~ ml/5
Gijm < y'm!/10 exp(— 57 > (80)
: &

@ Springer



980 FE. Comets et al.

Next, we employ the same strategy as in the proof of Theorem 2.6. Fix a large m, and
suppose that H > mt;l/f 2 -2 18 such that (70) holds.

Now, let Y be the expected number of particles that were absorbed in ﬁ[ up to

time H?/m, in the stationary regime. Clearly, we have then Jy= ;;u/’:n . So, one can write

H
EwY=k|Sd_1|_1/ doz/ du/ dh P (X -€) > pr_o(X - )]
0 Wy §d—1

(a,u),h H2
XPw K')H—ot(X'e)SWa@H—a(X'e)<5O—a(X'e)

+ B Wi, 81)

where VT/H,,,, is the mean number of particles that were injected in ﬁg, successfully crossed
the tube, and then hit D, before time H?/m. » _ .

Suppose that z,h are such that z - e € [W, W], T" “(z,h) < ty—2 2,
Ta’)’f2 (z, —h) <t,-2 ,,—2. Then, analogously to (71) and (72), we write

j —2

PL T [p—ce(X - €) < (X -€)] > JT (82)
i+ 1

B (X ©) <o ce(X Ol = . (83)

Moreover, by (78), for j <m>? (recall that ¢ = (H/m)?),

rd H2
P:,jh |:5OH—z»e(X -e) < 77 PH—ze(X-€) < o(X- e):|

> P (Z9) <m, 9(Z9) < p_u_j)(Z9)]

= Ei;th.mfj,m (Z(‘p))

m . )
> 5 2 —J exp(=L)as. 84
>—m m —i—/o TR exp( 262s> s (84)

Using (79), we obtain

H2
Pi;h |:K‘)H—z.e(X . e) =< ?7 @H—z»e(X : e) < B/‘)—Z'E(X ’ e)]

z,h 5
<E} Gj—l,m7j+l,m(z(w))

m . 22
<m™ — I exp( =L ) as. 85
=" +/o \/2nas3/2e"p< 2675 ) (85)

Thus, using (70), (73), (81), (82), (85), we obtain for some C;, C,, C3 > 0 (observe that, in
comparison to (74), to estimate the product of probabilities in (81), we have to assume that

both TUZ”_Z (z,h) and Ta’)”_2 (z, —h) are less than or equal to t,,—2 ,,-2)

HIe="gy
H= e
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2
_2/5 _ J d
X( / V2 as3/2 Xp( 2&25> S)
5
> 2l / exp( - =L ) ds
<m 3/5 2 0'53/2 20’2S

- C1 Lm_z/s - sz_1>
m

. m . )
Cun /5 S _J
> —Cym +k(|w0|)@_2 m/O \/E&Syzexp( z&zs)ds. (86)

j=m33

To obtain the corresponding upper bound, fix an arbitrary ¢ > 0 and suppose that m is
large enough so that (50) of Lemma 3.9 holds for those ¢, m. The term E, Wy, of (81) can
be estimated in the following way:

W H2 D, —1 152 I{2 &
EwWH,mECAt_Pwr[Q:H,TH <m H]|<Csy— x —,
m m H
50 %Ewﬁ}H,m < Cye. Then, analogously to (86), using also (80), we have for some
C5, C6 > 0
HI < 32 x 4m 2 HJon), + Cae
m Jj+1
A—
g 2

j<m3/s

— — j2
x—(<|wo|> +m 1)<m 2+/ mﬂm "P(‘ﬁ)ds>

—l—k— x (m —m*/)

H

H
x Z(ﬂwonp +m—‘)<m—2 +y m”“)exp(

Mleolle <3/5 ./«/—033/2 <

1/5
+ Che+ Csm™! +C6m1/loexp< 262>' 87)

Now, observe that

e EAL e )
lim = ———eX
m—oeo .23:/5 mJo 26532
j<m
= lim / < >mds
m%oo.i;/s /2 O-m3/2s3/2
1 2 . 2
— 1im Z (j//m) exp _(]/t/ﬁ) ds
m—o00 3/5 0 27‘[6’5‘3/2 20-23

oo r2 1’2
Y P R R G
/0 ' 0 : V2m 6532 exp( 252S>
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/ 1 ds /oo d r2 r2
= — r exp| —
o S Jo 2o s1? P\ " 262

With this observation, Theorem 2.7 follows from (86) and (87). a
5.2 Proof of Theorems 2.9 and 2.10

Observe that, since the particles are independent, the Knudsen gas in the finite tube 52
can be regarded as a M /G /oo queueing system; moreover, using e.g. Theorem 2.1 of [6] it
is straightforward to obtain that the service time (which is the lifetime of a newly injected
particle) is a random variable with exponential tail. Then, let us recall the following basic
identity of queuing theory (known as Little’s theorem):

Proposition 5.2 Suppose that A, is the arrival rate, q is the mean number of customers in
the system, and T is the mean time a customer spends in the system, then T = q/A,.

Proof See e.g. Sect. 5.2 of [9]. To understand intuitively why this fact holds true, one may
reason in the following way: by large time ¢, the total time of all the customers in the system
would be (approximately) g¢ on one hand, and T A,¢ on the other hand. ]

Proof of Theorem 2.9 This result almost immediately follows from Theorem 2.6 by using
Proposition 5.2. First, for the gas of independent particles the arrival rate is

_ Mol (88)
CalSY
recall that the particles are injected in D; only. Then, from Theorem 2.6 it is straightforward
to obtain that for the mean number of particles gy in the system, we have

L an _ AH (o),
m —=-——-—-.
H—oo H 2

Then, Proposition 5.2 implies (7). To prove the corresponding annealed result, note that
gy < MH|E| by Theorem 2.8(ii). So, applying the bounded convergence theorem, we ob-
tain (8). O

Proof of Theorem 2.10 First, observe that in the stationary regime the particles leave
the system at the right boundary with rate Jg, and this should be equal to the entrance
rate A,P,[Cy] of the particles which cross the tube, with A, from (88). So, (12) follows
from Theorem 2.7.

To prove (13), observe that, by using Lemma 3.5 with B = ﬁg and F = 13,, we obtain
that for some positive constants Cy, C, which do not depend on w

C
HP,[Cy] < C) + — b(x)dv® (x).
Fo(0,H)
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By (38), the collection of random variables (HP,[Cy], H > 1) is uniformly integrable, and
this implies (13).

In order to prove (14), denote by ¢}, the mean number of particles in the stationary regime
that will exit at ﬁ,. Observe that, by Theorem 2.8(ii) and Proposition 5.1,

/ 1
Jim %” =x<|w0|)P/0 x(1—x)dx = %.
So, using (12) and Proposition 5.2, we obtain (14). The relations (15) and (16) follow
from (14) and (12).

Now, observe that (18) and (19) immediately follow from (15), (16), and (8), so now
it remains only to prove (17). Let oy := T+(D({), Or+1 = min{m > oy : §, € bg} be the
moments of successive visits to Dy for the process in the finite tube. By Corollary 3.2, &, is
uniformly distributed in 5( for all k, and so we can write

P2 [1(D,) < 0] < kP, [Cx]. (89)

Then, using (89), Lemma 3.7, and the fact that the random variables (Z;, j > 1) are inde-
pendent of everything, we obtain

Cs N
— < Pp,[€
7= [€x]

o0
<) PIE(D,) < 2(D0).0kr < Zi+ o+ Zy) < 0]
k=1

<PulZi+---+Z;#o,forall £ <kandall j |r(lA),)<Uk]

x P,[t(D,) < oy]

< P[€y] Y k(1= N"HIFT,

k=1

and this implies that P,[€x] > C4/H for some C4 > 0 not depending on w. Since g <
AH|E|, one obtains (17) from the bounded convergence theorem. |
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